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Abstract: Linear control theory has been long established and a myriad of techniques
are available for designing controllers for linear systems in view of conflicting performance
requirements. On the other hand, nonlinear control techniques are often tailored to specific
applications and versatile nonlinear control frameworks are still on their infancy. A common
approach is to resort to local linearized descriptions at desired set-points over a given desired
trajectory and employ linear tools. Furthermore, to enforce stability when switching controllers,
the regions-of-attraction approach has gained recent attention. This paper questions whether
such method – when applied to a well-posed smooth nonlinear controllable system – always
yields a sequence of controllers that successfully tracks a given reference equilibrium trajectory,
and an analytic counter-example is provided and thoroughly discussed. Finally, our case study
additionally shed light on how gain scheduling fails to track particular trajectories for certain
globally controllable systems.
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1. INTRODUCTION

Recent advances in avionics hardware technology allow
for novel unmanned aerial vehicles (UAVs) architectures
as well as increased maneuverability of traditional ones.
For instance, the increasingly popular convertible archi-
tectures such as tilt-body and tilt-wing vehicles are capa-
ble of switching between helicopter and fixed-wing modes
during flight allowing for hovering capabilities in a long-
endurance vehicle (Lustosa et al. (2015)). Such vehicles
exhibit wide heterogeneous flight envelopes which preclude
global linear controllers employment as auto-pilots and/or
stability augmentation systems (SAS). Nonlinear control
techniques, however, are often tailored to specific applica-
tions and general nonlinear control frameworks are still on
their infancy.

For instance, feedback linearization methods render a non-
linear system linear by means of appropriate state diffeo-
morphism transformations. However, such transformation
exists only for fully actuated systems (generally absent
in aerial robotics) and, additionally, controller design is
often challenging due to unstable zero dynamics. Sliding
mode control, on the other hand, applies to underactuated
systems but model uncertainties may lead to excessive
chattering and excitation of unmodeled dynamics. Ad-
vances in computing hardware and optimization theory
allow for successful model predictive control design but its
non-convex nature poses challenges for high dimensional
embedded real-time applications.

? This work is partially supported by the Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico, CNPq (Brazilian National
Science Foundation), through the ”Ciência sem Fronteiras” program.

Gain-scheduling techniques, on the other hand, are based
on linearization of nonlinear systems at desired operat-
ing points thus profiting of well established and com-
putationally inexpensive linear control techniques. The
manual sequential controller design is tedious but has
being increasingly replaced by H∞-based automated al-
gorithms (Gahinet and Apkarian (2011)). Furthermore,
advances in regions-of-attraction computation by means
of direct computation of Lyapunov functions using sum-
of-squares (SOS) optimization (Johansen (2000); Parrilo
(2000)) allow for efficient stability guarantees while switch-
ing scheduled controllers. This regions-of-attraction-based
gain scheduling (RoA-GS) strategy was recently validated
in agile fixed-wing vehicles (Moore et al. (2014)) and pro-
moted to a motion planning technique by means of a sparse
randomized tree of scheduled linear quadratic regulators
(LQR) (Tedrake et al. (2010)).

The present paper contributes to the RoA-GS framework
by investigating whether the RoA-GS planning technique
always yield a finite (or even countable infinite) sequence
of controllers leading to a desired set-point given a well-
posed controllable nonlinear system and a reference equi-
librium trajectory. Section 2 revisits the RoA-GS method
and sets up notation. Section 3 proposes a well-posed
nonlinear system that is globally controllable and fully-
actuated almost everywhere, but RoA-GS fails to track
a given equilibrium trajectory. Finally, section 4 presents
opportunities for future work and conclusion.



2. REGIONS-OF-ATTRACTION-BASED SWITCHING
CONTROL REVISITED

Consider a nonlinear globally controllable dynamical sys-
tem f ∈ C∞ of the form

dx

dt
= f(x,u) (1)

where x ∈ Rn and u ∈ Rm are, respectively, state-space
coordinates and control inputs. Furthermore, consider a
given equilibrium point (x0,u0), i.e.,

f(x0,u0) = 0 (2)

at which a local linear controller is designed by means of
linear control techniques applied at the linearized system

d

dt
∆x0 = A0∆x0 +B0∆u0 (3)

where
∆x0 = x− x0 (4)

∆u0 = u− u0 (5)

A0 =
∂f

∂x

∣∣∣
(x0,u0)

(6)

and

B0 =
∂f

∂u

∣∣∣
(x0,u0)

(7)

Linear control design techniques (e.g., pole-placement,
LQR, H∞) yield local stabilizing controllers of the form

∆u0 = −K0∆x0 (8)

which regulate the error ∆x0 on a neighborhood of x0. A
set R0 ⊂ Rn of initial conditions x(0) that are regulated
by this local controller K0 is called a region-of-attraction
(RoA), basin of attraction or attractor for the given con-
troller around x0 (Chiang et al. (1988)). RoA computation
is challenging in all but exceedingly simple systems and
often conservative estimates are numerically computed
instead by means of polynomial Lyapunov functions (Tan
and Packard (2008); Topcu and Packard (2009); Topcu
et al. (2010)).
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Fig. 1. To steer x from x(0) towards x0, controller K1 is
employed until x reaches R0. Afterwards, controller
K0 drives x towards the desired setpoint.

Moreover, consider a second linear regulator K1 with
associated operating point x1 6= x0 such that x1 ∈
R0 and an initial state x(0) ∈ R1 \ R0 (see figure 1).
Since x(0) /∈ R0, controller K0 does not guarantee x(t)
regulation in x0. However, x0-convergence is guaranteed
by initially applying controller K1 until x(t) ∈ R0 (which
is guaranteed since x1 ∈ R0) and then switching control
to K0 (we denote the time that this occurs as t1). This
methodology yields a RoA-GS controller K0:1 with an

enlarged region-of-attraction R0:1 = R0 ∪ R1. Finally, N
iterations of the aforementioned steps yield a controller
K0:N that potentially allows for wide regions-of-attraction

R0:N =

N⋃
i=0

Ri (9)

as figure 2 illustrates. For instance, Tedrake et al. (2010)
applies this concept to motion planning by means of a
sparse randomized tree of scheduled LQR controllers.
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Fig. 2. Sequence of scheduled controllers K0:N and respec-
tive regions-of-attraction R0:N , for N = 3.

Consider now a given desired quasi-static trajectory 1

parametrized by xd(s) : [0, 1] → Rn, that is, we want
to steer the state towards xd(0) from xd(1) by closely
tracking the curve xd(s). We chose s as parameter symbol
to reinforce the absence of time performance requirements
in the trajectory definition.
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Fig. 3. Desired quasi-static trajectory xd(s) and illus-
trative iterations of the regions-of-attraction based
switching linear control algorithm.

A gain-scheduling control design strategy for xd(s) track-
ing is proposed (Burridge et al. (1999)) as follows. Firstly,
we design a controller K0 for xd(s0), where s0 = 0 (see fig-
ure 3), by means of any preferred linear control technique.
Let s0,1 be the point where R0 intersects xd(s), i.e.,

s0,1 , sup{s ∈ [0, 1] : xd(s) ∈ R0} (10)

and, secondly, we design a controller K1 at xd(s1) where

s1 = µ(s0,1 − s0) + s0 (11)

with 0 < µ < 1. Appropriate µ design is dependent
on the particular xd(s) parametrization, K0 and system

1 A quasi-static trajectory is system-dependent and means herein
that f(xd(s)) = 0 for all s ∈ [0, 1], i.e., it is a trajectory composed
of equilibrium points.



dynamics. Independently, small µ yield small contribution
to the region-of-attraction expansion whereas overly large
µ might preclude robustness. The aforementioned RoA-
GS procedure is iterated until sn reaches 1 (see figure
3) and delivers a controller K0:N that follows the desired
trajectory.

An important question is whether the aforementioned al-
gorithm terminates for N <∞. The answer is key not only
to avoid infinite loops in practical implementations but,
more importantly, to better understand, as we shall soon
discuss, when gain scheduling is not suitable. Figure 4 il-
lustrates a conceptual case where the regions-of-attraction
Ri are successfully advancing forward but never reaching
the end goal. Is that a possibility for smooth controllable
nonlinear systems? Indeed, the next section proves these
phenomena possible and further discusses the matter.
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Fig. 4. Illustration of the hypothesis: a sequence of con-
trollers Ki where si fail to converge to 1.

3. ROA-GS FEASIBILITY – A CASE STUDY

Consider the following nonlinear system

d

dt

(
x1
x2

)
= f(x,u) =

(
x1u1 + x2

u2

)
(12)

where x = (x1, x2) ∈ R2 and u = (u1, u2) ∈ R2 are,
respectively, state variable and control input. Straight-
forward linearization with respect to (xi,ui) yields (for
subsequent local linear control design in section 3.2)

Ai =

[
u1,i 1
0 0

]
Bi =

[
x1,i 0
0 1

]
(13)

where the subscript notation alludes(
x1,i
x2,i

)
= xi

(
u1,i
u2,i

)
= ui (14)

Notice that (Ai, Bi) is controllable for all (xi,ui) ∈ R2×R2

since the associated Kalman controllability matrix is full
rank, i.e.,

rank ([Bi AiBi]) = rank

([
x1,i 0 u1,ix1,i 1
0 1 0 0

])
= 2 (15)

3.1 Nonlinear controllability and underactuation analysis

By inspection we conclude that f(x,u) is fully actuated
in A ⊂ R2, where A is given by

A = {(x1, x2) ∈ R2 : x1 6= 0} (16)

and it is underactuated in U ⊂ R2, where U is given by

U = R2 \ A = {(x1, x2) ∈ R2 : x1 = 0} (17)

Additionally, notice that x2(t) possesses decoupled and
marginally stable controllable linear dynamics. On the
other hand, if u1(t) is held constant and zero, then x(t)
dynamics becomes marginally stable linear controllable
with respect to u2(t). Consequently, the complete nonlin-
ear system f(x,u) is controllable.

To further illustrate the aforementioned controllability
property, consider an initial state xi ∈ U and a desired
final state xf ∈ U (see figure 5). Notice that the straight
trajectory between them is unattainable since u1 actuation
in ẋ1 is canceled by x1 = 0, and x2 6= 0 drives x out
of U imperatively. A feasible trajectory is to let x drive
away from U, and steer x back to U at appropriate reentry
points by means of the fully actuated u (which is possible
in arbitrary trajectories in A).
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Fig. 5. An example of a feasible trajectory starting and
ending at the underactuated region U.

3.2 LQR design

Consider the problem of tracking the rectilinear equilib-
rium trajectory xd(s) : [0, 1]→ R2 given by

xd(s) =

(
xi
0

)
+

(
xf − xi

0

)
s (18)

with xi > 0 and xf < 0. Accordingly, we apply RoA-GS
with LQR as the chosen linear control design technique for
all controllers Ki due to its simple methodology (numerous
Ki might be required depending on the application) and
adequate stability margins (Safonov and Athans (1977)).
Each LQR design iteration yields a suboptimal linear
control policy ∆u∗i (t) = −Ki∆xi that locally minimizes
the cost

J
(
∆xi(ti),∆ui

)
=

∫ ∞
ti

(
∆xT

i Qi∆xi + ∆uT
i Ri∆ui

)
dt

(19)
where ∆xi(ti) ∈ R2, Qi, Ri ∈ R2×2, are, respectively,
initial state of the Ki controller at the switching moment
instant ti, positive semi-definite state penalty and positive
definite actuator penalty matrices. For instance, let us
consider



Qi =



 1
−1

|x1,i|
−1

|x1,i|
2

x21,i

 , if x1,i 6= 0

[
1 0

0 1

]
, if x1,i = 0

(20)

and

Ri =

[
1 0
0 1

]
(21)

The perhaps peculiar choice of Qi for x1,i 6= 0 is justified
by the following identity

∆xT
i Qi∆xi =

(
∆x1,i
∆x2,i

)T

 1
−1

|x1,i|
−1

|x1,i|
2

x21,i

(∆x1,i
∆x2,i

)
=

=

∆x1,i
∆x2,i
|x1,i|

T [
1 −1
−1 2

]∆x1,i
∆x2,i
|x1,i|

 (22)

which illustrates larger allowance of ∆x2,i usage in view
of distant (from the origin) operating points x1,i.

In view of the chosen weights, by means of the Hamilton-
Jacobi-Bellman equation, one can show (Anderson and
Moore (1990)) that the control policy

∆u∗i (t) = arg min
∆ui

J
(
∆xi(ti),∆ui

)
(23)

is independent of ∆xi(ti) and is given by

∆u∗i (t) = −BT
i Pi∆xi(t) (24)

where Pi is the unique semi-positive definite solution of
the algebraic Riccati equation (ARE)

PiAi +AT
i Pi − PiBiB

T
i Pi +Qi = 0 (25)

if (Ai, Bi) is stabilizable and (Ai, Q
1/2
i ) is detectable.

The solution Pi is normally computed numerically (Laub
(1978); Petkov et al. (1991)), but our reachability assess-
ment study calls for an analytical expression. Accordingly,
we denote Pi by

Pi =

[
α β
β γ

]
(26)

and substitute it back in (25) to obtain the following
nonlinear algebraic system of equations

1− β2 − α2x21,i = 0

α− 1

|x1,i|
− βγ − αβx21,i = 0

−β2x21,i + 2β − γ2 +
2

x21,i
= 0

(27)

by additionally recalling that Ai and Bi (equation 13) over
the trajectory described by (18) reduce to

Ai =

[
0 1
0 0

]
Bi =

[
x1,i 0
0 1

]
(28)

We invite the reader to check that the following Pi is a
solution to (27)

Pi =


1

|x1,i|
0

0

√
2

|x1,i|

 (29)

which is positive-definite and thus the unique solution of
(27). Substitution of (28) and (29) into (24) yields

∆ui(t) = −


x1,i
|x1,i|

0

0

√
2

|x1,i|

∆xi(t) (30)

We omitted the (rather simple to solve) case x1,i = 0 since
the RoA-GS algorithm never reaches xi = 0, as we shall
prove next.

3.3 Region-of-attraction computation

Due to its complexity regions-of-attraction are often com-
puted numerically. However, in the present study, analyti-
cal intervals-of-attraction in the direction of the desired
trajectory are provided to prove RoA-GS infeasibility.
Initially, since we are interested in ∆xi convergence, we
rewrite (12) by substituting (4), (5) and (30) to obtain

∆ẋ1,i = −|x1,i|∆xi −
x1,i
|x1,i|

∆x21,i + ∆x2,i (31)

and

∆ẋ2,i = −
√

2

|x1,i|
∆x2,i (32)

The ∆x2,i component has decoupled linear dynamics that
yields the well-known exponential decay given by

∆x2,i(t) = ∆x2,i(ti)e
−
√

2
|x1,i|

(t−ti)
(33)

that clearly converges to zero when t → ∞ for all xi,1 ∈
R∗. Substitution of (33) in (31) yields

∆ẋ1,i = −|x1,i|∆xi −
x1,i
|x1,i|

∆x21,i + ∆x2,i(ti)e
−
√

2
|x1,i|

(t−ti)

(34)

Consider the following subset Π ⊂ R2 of initial conditions

Π = {∆xi(ti) ∈ R2 : ∆x2,i(ti) = 0} (35)

For ∆xi(ti) ∈ Π, equation 34 reduces to

∆ẋ1,i = −|x1,i|∆xi −
x1,i
|x1,i|

∆x21,i (36)

which is nonlinear time-invariant. Its equilibrium points
p1 and p2 are solutions of the quadratic equation

−|x1,i|pi −
x1,i
|x1,i|

p2i = 0 (37)

i.e.,
p1 = 0, p2 = −xi,1 (38)

Its associated phase portrait is illustrated in figures 6 and
7 (be aware of the change of variables from ∆x1,i to x1,i).
Interestingly, the phase portrait reveals that x = 0 is not
stable thus not included in any Ri for any controller Ki

designed at any operation point x1,i 6= 0. Therefore the
sequence of regions-of-attraction Ri never cross the origin
as figure 8 illustrates.

From another point of view, given a Ki controller centered
in xi,1 > 0, we conclude that the next controller, namely
Ki+1, is scheduled at

xi+1,1 = (1− µ)xi,1 (39)

such that
xi+N,1 = (1− µ)Nxi,1 > 0 (40)
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Fig. 6. Phase portrait of closed-loop f(x,−Ki∆xi) when
∆xi(ti) ∈ Π+.
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Fig. 7. Phase portrait of closed-loop f(x,−Ki∆xi) when
∆xi(ti) ∈ Π−.
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Fig. 8. Sequence of RoA-GS controllers Ki with associated
Ri fails to cross the origin and reach xf .

and never reaches xf since xf < 0. RoA-GS generates an
infinite sequence of controllers Ki with operating points
xi asymptotically converging to 0 but never crossing it.

2

Finally, consider the scenario of gain scheduling design
without RoA for tracking the same trajectory with an
uniform distribution per unit length ρ of LQR controllers
used instead. By the foregoing development we conclude
that no ρ renders tracking possible. Therefore, in general,
discrete gain scheduling is inappropriate for this example.

4. CONCLUSION

We prove by means of an analytical counterexample that
global controllability does not imply successful RoA-GS

nor gain scheduling quasi-static trajectory tracking. Fu-
ture work might include sufficient conditions for RoA-GS
trajectory tracking.
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